Points, lines, planes, etc.

June Huh

IAS

November 29, 2016

Here are 4 points in projective plane:

The 4 points determine 6 lines:

Let's move one of the points into special position:

Now the 4 points determine 4 lines:

4 POINTS 4 LINES

Think of all seven points with zero-one coordinates:

The 7 points determine 9 lines:

What happens if we move "p" in the base $\text{Spec}(\mathbb{Z})$ toward the prime number 2?

7 POINTS 9 LINES

The 7 points determine 7 lines:

Theorem

Every set of points E in a projective plane determines at least |E| lines,

Theorem (de Bruijn and Erdős, 1948)

Every set of points E in a projective plane determines at least |E| lines,

unless E is contained in a line.

Here are 4 points in space defining 6 lines and 4 planes:

... and 5 points defining 10 lines and 10 planes:

... and 5 points defining 10 lines and 7 planes:

... and 5 points defining 8 lines and 5 planes:

Theorem (Motzkin, 1951)

Every set of points E in a projective space determines at least |E| hyperplanes,

unless E is contained in a hyperplane.

Theorem (Motzkin, 1951)

Every set of points E in a projective space determines at least |E| hyperplanes,

unless E is contained in a hyperplane.

Motzkin worked over the real numbers and used properties of real numbers.

The assumption was removed by Basterfield and Kelly in 1968.

The theorem says that $|\mathscr{L}_1| \leq |\mathscr{L}_{d-1}|$.

Why is this true?

Theorem (Greene, 1970)

For every point (in \mathscr{L}_1) one can choose a hyperplane (in \mathscr{L}_{d-1}) containing the point

so that no hyperplane is chosen twice (unless E is contained in a hyperplane).

Theorem (Greene, 1970)

For every point (in \mathscr{L}_1) one can choose a hyperplane (in \mathscr{L}_{d-1}) containing the point so that no hyperplane is chosen twice (unless *E* is contained in a hyperplane).

In other words, there is a *matching* from points to hyperplanes, where

matching =
$$\begin{pmatrix} \mathscr{L}_1 & \stackrel{\iota}{\longrightarrow} & \mathscr{L}_{d-1}, & x \leq \iota(x) & \text{for all } x. \end{pmatrix}$$

Let *E* be a *spanning* subset of a *d*-dimensional vector space *V*, and let \mathscr{L} be the poset of subspaces of *V* spanned by subsets of *E*.

Write \mathscr{L}_p for the set of *p*-dimensional spaces in \mathscr{L} .

Let E be a spanning subset of a d-dimensional vector space V, and

let \mathcal{L} be the poset of subspaces of V spanned by subsets of E.

Write \mathscr{L}_p for the set of *p*-dimensional spaces in \mathscr{L} .

Example

If *E* is the set of 4 general vectors in \mathbb{R}^3 (4 general points in projective plane),

$$egin{aligned} |\mathscr{L}_0| &= 1, \ |\mathscr{L}_1| &= 4, \ |\mathscr{L}_2| &= 6, \ |\mathscr{L}_3| &= 1. \end{aligned}$$

Top-heavy Conjecture (Dowling and Wilson, 1974)

(1) For every *p* less than $\frac{d}{2}$, we have

$$\mathscr{L}_p| \leq |\mathscr{L}_{d-p}|.$$

In fact, there is a matching

$$\mathscr{L}_p \stackrel{\iota}{\longrightarrow} \mathscr{L}_{d-p}.$$

Top-heavy Conjecture (Dowling and Wilson, 1974)

(1) For every *p* less than $\frac{d}{2}$, we have

$$\mathscr{L}_p| \leq |\mathscr{L}_{d-p}|.$$

In fact, there is a matching

$$\mathscr{L}_p \stackrel{\iota}{\longrightarrow} \mathscr{L}_{d-p}.$$

(2) For every p less than $\frac{d}{2}$, we have

$$\mathscr{L}_p| \le |\mathscr{L}_{p+1}|.$$

In fact, there is a matching

$$\mathscr{L}_p \stackrel{\iota}{\longrightarrow} \mathscr{L}_{p+1}.$$

The conjecture is known for the Boolean lattice $\mathscr{L} = 2^{E}$ (nontrivial!).

The conjecture is known for the Boolean lattice $\mathscr{L} = 2^{E}$ (nontrivial!).

In this case, the conjecture says that (by self-duality) there is

 $\mathscr{L}_0 \longrightarrow \mathscr{L}_1 \longrightarrow \cdots \longrightarrow \mathscr{L}_{d/2} \longleftrightarrow \cdots \longleftrightarrow \mathscr{L}_{d-1} \longleftrightarrow \mathscr{L}_d.$

The conjecture is known for the Boolean lattice $\mathscr{L} = 2^{E}$ (nontrivial!).

In this case, the conjecture says that (by self-duality) there is

 $\mathscr{L}_0 \longrightarrow \mathscr{L}_1 \longrightarrow \cdots \longrightarrow \mathscr{L}_{d/2} \longleftrightarrow \cdots \longleftrightarrow \mathscr{L}_{d-1} \longleftrightarrow \mathscr{L}_d.$

This implies Sperner's theorem:

"The maximum number of incomparable elements in the Boolean lattice is $\binom{d}{d/2}$."

The conjecture is known for partition lattices (Kung, 1993).

(The poset of all partitions of a finite set ordered by reverse refinement.)

The conjecture is known for partition lattices (Kung, 1993).

(The poset of all partitions of a finite set ordered by reverse refinement.)

Canfield (1978) famously showed that the following stronger version of the conjecture (of Rota) fails for partition lattices:

"For every p, there is a matching from \mathscr{L}_p to \mathscr{L}_{p+1} or from \mathscr{L}_{p+1} to \mathscr{L}_p ."

The conjecture is known for partition lattices (Kung, 1993).

(The poset of all partitions of a finite set ordered by reverse refinement.)

Canfield (1978) famously showed that the following stronger version of the conjecture (of Rota) fails for partition lattices:

"For every p, there is a matching from \mathscr{L}_p to \mathscr{L}_{p+1} or from \mathscr{L}_{p+1} to \mathscr{L}_p ."

The smallest known partition lattice without the matching property has size $\geq 10^{10^{20}}$

Theorem (H-Wang)

The top-heavy conjecture holds.

Theorem (H-Wang)

The top-heavy conjecture holds.

For those who know about geometric lattices (\simeq matroids):

The original formulation of the conjecture concerns arbitrary geometric lattices.

The current proof works only when \mathcal{L} is "realizable" over some field.

We construct a graded commutative algebra

$$B^*(\mathscr{L}) = igoplus_{p=0}^d B^p(\mathscr{L}), \qquad B^p(\mathscr{L}) = igoplus_{y\in\mathscr{L}_p} \mathbb{Q} y.$$

We construct a graded commutative algebra

$$B^*(\mathscr{L}) = igoplus_{p=0}^d B^p(\mathscr{L}), \qquad B^p(\mathscr{L}) = igoplus_{y\in\mathscr{L}_p} \mathbb{Q} y.$$

The multiplication is defined by the rule

$$y_1y_2 = \left\{egin{array}{ll} y_1 ee y_2 & ext{if } \dim(y_1) + \dim(y_2) = \dim(y_1 ee y_2), \ 0 & ext{if } \dim(y_1) + \dim(y_2) > \dim(y_1 ee y_2). \end{array}
ight.$$

This is a graded version of the *Möbius algebra*.

We write *L* for the sum of all elements in \mathcal{L}_1 , and show that

$$B^p(\mathscr{L}) \stackrel{L^{d-2p}}{\longleftrightarrow} B^{d-p}(\mathscr{L}),$$

when ${\mathscr L}$ is realizable over some field. This will be enough.

We conjecture that the same holds without the assumption of realizability.

To deduce the top-heavy conjecture, consider the matrix of the linear map

$$B^p(\mathscr{L}) \stackrel{L^{d-2p}}{\longrightarrow} B^{d-p}(\mathscr{L}).$$

 Entries of this matrix are labelled by pairs of elements of *L*, and all the entries corresponding to incomparable pairs are zero.

$$B^p(\mathscr{L}) \stackrel{L^{d-2p}}{\longrightarrow} B^{d-p}(\mathscr{L}).$$

- Entries of this matrix are labelled by pairs of elements of *L*, and all the entries corresponding to incomparable pairs are zero.
- (2) The matrix has full rank, so there must be a nonzero maximal minor.

- Entries of this matrix are labelled by pairs of elements of *L*, and all the entries corresponding to incomparable pairs are zero.
- (2) The matrix has full rank, so there must be a nonzero maximal minor.
- (3) In the expansion of the nonzero determinant, there must be a nonzero term.

- Entries of this matrix are labelled by pairs of elements of *L*, and all the entries corresponding to incomparable pairs are zero.
- (2) The matrix has full rank, so there must be a nonzero maximal minor.
- (3) In the expansion of the nonzero determinant, there must be a nonzero term.
- (4) The permutation corresponding to this term produces the matching ι .

(1) We construct a map between smooth projective varieties

 $f: X \longrightarrow Y$, $\dim(X) = d$, $\dim(Y) = |E|$.

(1) We construct a map between smooth projective varieties

$$f: X \longrightarrow Y$$
, $\dim(X) = d$, $\dim(Y) = |E|$.

(2) The map f, which is birational onto its image, comes with an isomorphism $B^*(\mathscr{L}) \simeq \operatorname{image}\left(H^{2*}(Y) \longrightarrow H^{2*}(X)\right), \qquad L \simeq \text{ample on } Y.$

(1) We construct a map between smooth projective varieties

$$f: X \longrightarrow Y$$
, $\dim(X) = d$, $\dim(Y) = |E|$.

(2) The map f, which is birational onto its image, comes with an isomorphism $B^*(\mathscr{L}) \simeq \operatorname{image}\left(H^{2*}(Y) \longrightarrow H^{2*}(X)\right), \qquad L \simeq \text{ample on } Y.$

(3) By the decomposition theorem, $Rf_*\mathbb{Q}_X \simeq IC_{f(X)} \oplus \mathscr{C}$.

(1) We construct a map between smooth projective varieties

$$f: X \longrightarrow Y$$
, $\dim(X) = d$, $\dim(Y) = |E|$.

(2) The map f, which is birational onto its image, comes with an isomorphism $B^*(\mathscr{L}) \simeq \operatorname{image}\left(H^{2*}(Y) \longrightarrow H^{2*}(X)\right), \qquad L \simeq \text{ample on } Y.$

(3) By the decomposition theorem, $Rf_*\mathbb{Q}_X \simeq IC_{f(X)} \oplus \mathscr{C}$. Therefore,

 $B^*(\mathscr{L})$ is isomorphic to a $H^{2*}(Y)$ -submodule of $IH^{2*}(f(X))$.

(1) We construct a map between smooth projective varieties

$$f: X \longrightarrow Y$$
, $\dim(X) = d$, $\dim(Y) = |E|$.

(2) The map f, which is birational onto its image, comes with an isomorphism $B^*(\mathscr{L}) \simeq \operatorname{image}\left(H^{2*}(Y) \longrightarrow H^{2*}(X)\right), \qquad L \simeq \text{ample on } Y.$

(3) By the decomposition theorem, $Rf_*\mathbb{Q}_X \simeq IC_{f(X)} \oplus \mathscr{C}$. Therefore,

 $B^*(\mathscr{L})$ is isomorphic to a $H^{2*}(Y)$ -submodule of $IH^{2*}(f(X))$.

(4) The hard Lefschetz theorem for $IH^{2*}(f(X))$ gives the conclusion

$$B^p(\mathscr{L}) \stackrel{L^{d-2p}}{\longrightarrow} B^{d-p}(\mathscr{L}).$$

In fact, after changing coefficients to \mathbb{Q}_ℓ if necessary, we have

 $B^*(\mathscr{L}) \simeq H^{2*}(f(X)).$

Okay, how to construct the map $f : X \longrightarrow Y$?

Okay, how to construct the map $f : X \longrightarrow Y$?

The construction of f for the Boolean lattice will induce all other constructions.

My favorite polytopes:

I will mark a vertex of the simplex and a vertex of the cube.

June Huh

The corresponding toric varieties are

The inclusions ι_1 , ι_2 come from the markings.

The map π_1 is the blowup of all the torus invariant points in \mathbb{P}^n , all the strict transforms of torus invariant \mathbb{P}^1 's in \mathbb{P}^n , all the strict transforms of torus invariant \mathbb{P}^2 's in \mathbb{P}^n , etc. The map π_1 is the blowup of all the torus invariant points in \mathbb{P}^n , all the strict transforms of torus invariant \mathbb{P}^1 's in \mathbb{P}^n , all the strict transforms of torus invariant \mathbb{P}^2 's in \mathbb{P}^n , etc.

The map π_2 is the blowup of points 0^n and ∞^n ,

all the strict transforms of torus invariant \mathbb{P}^1 's in $(\mathbb{P}^1)^n$ containing 0^n or ∞^n ,

all the strict transforms of torus invariant $(\mathbb{P}^1)^2$'s in $(\mathbb{P}^1)^n$ containing 0^n or ∞^n , etc.

Let $E = \{f_1, f_2, \dots, f_n\}$ be a spanning subset of a *d*-dimensional vector space *V*.

We use *E* to construct the inclusion $\iota_E : V^{\vee} \longrightarrow \mathbb{C}^n$.

Let $E = \{f_1, f_2, \dots, f_n\}$ be a spanning subset of a *d*-dimensional vector space *V*.

We use *E* to construct the inclusion $\iota_E : V^{\vee} \longrightarrow \mathbb{C}^n$.

Consider the closure of V^{\vee} in \mathbb{P}^n and its strict transform

Let $E = \{f_1, f_2, \dots, f_n\}$ be a spanning subset of a *d*-dimensional vector space *V*.

We use *E* to construct the inclusion $\iota_E : V^{\vee} \longrightarrow \mathbb{C}^n$.

Consider the closure of V^{\vee} in \mathbb{P}^n and its strict transform

The map f we want is the composition $X \xrightarrow{j} X_{A_n} \xrightarrow{\pi_2} (\mathbb{P}^1)^n$.