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Here are 4 points in projective plane:
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The 4 points determine 6 lines:
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Let’s move one of the points into special position:
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Now the 4 points determine 4 lines:
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Think of all seven points with zero-one coordinates:
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The 7 points determine 9 lines:
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What happens if we move “p” in the base Spec(Z) toward the prime number 2?
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The 7 points determine 7 lines:
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Theorem

Every set of points E in a projective plane determines at least jE j lines,
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Theorem (de Bruijn and Erdős, 1948)

Every set of points E in a projective plane determines at least jE j lines,

unless E is contained in a line.
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Here are 4 points in space defining 6 lines and 4 planes:
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. . . and 5 points defining 10 lines and 10 planes:
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. . . and 5 points defining 10 lines and 7 planes:
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. . . and 5 points defining 8 lines and 5 planes:
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Theorem (Motzkin, 1951)

Every set of points E in a projective space determines at least jE j hyperplanes,

unless E is contained in a hyperplane.

Motzkin worked over the real numbers and used properties of real numbers.

The assumption was removed by Basterfield and Kelly in 1968.
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The theorem says that jL1j � jLd�1j.

Why is this true?
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Theorem (Greene, 1970)

For every point (in L1) one can choose a hyperplane (in Ld�1) containing the point

so that no hyperplane is chosen twice (unless E is contained in a hyperplane).

In other words, there is a matching from points to hyperplanes, where

matching =
�

L1 Ld�1;
�

x � �(x ) for all x :
�
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Let E be a spanning subset of a d-dimensional vector space V , and

let L be the poset of subspaces of V spanned by subsets of E .

Write Lp for the set of p-dimensional spaces in L .

Example

If E is the set of 4 general vectors in R3 (4 general points in projective plane),

jL0j = 1;

jL1j = 4;

jL2j = 6;

jL3j = 1:
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Top-heavy Conjecture (Dowling and Wilson, 1974)

(1) For every p less than d
2
, we have

jLp j � jLd�p j:

In fact, there is a matching
Lp Ld�p :

�

(2) For every p less than d
2
, we have

jLp j � jLp+1j:

In fact, there is a matching
Lp Lp+1:

�
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The conjecture is known for the Boolean lattice L = 2E (nontrivial!).

In this case, the conjecture says that (by self-duality) there is

L0 L1 � � � Ld=2 � � � Ld�1 Ld :

This implies Sperner’s theorem:

“The maximum number of incomparable elements in the Boolean lattice is
�

d

d=2

�
.”
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The conjecture is known for partition lattices (Kung, 1993).

(The poset of all partitions of a finite set ordered by reverse refinement.)

Canfield (1978) famously showed that the following stronger version of the conjecture

(of Rota) fails for partition lattices:

“For every p, there is a matching from Lp to Lp+1 or from Lp+1 to Lp .”

The smallest known partition lattice without the matching property has size � 1010
20

.
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Theorem (H-Wang)

The top-heavy conjecture holds.

For those who know about geometric lattices (' matroids):

The original formulation of the conjecture concerns arbitrary geometric lattices.

The current proof works only when L is “realizable” over some field.
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We construct a graded commutative algebra

B
�(L ) =

dM
p=0

B
p(L ); B

p(L ) =
M
y2Lp

Qy :

The multiplication is defined by the rule

y1y2 =

(
y1 _ y2 if dim(y1) + dim(y2) = dim(y1 _ y2),

0 if dim(y1) + dim(y2) > dim(y1 _ y2).

This is a graded version of the Möbius algebra.
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We write L for the sum of all elements in L1, and show that

Bp(L ) Bd�p(L );
Ld�2p

when L is realizable over some field. This will be enough.

We conjecture that the same holds without the assumption of realizability.
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To deduce the top-heavy conjecture, consider the matrix of the linear map

Bp(L ) Bd�p(L ):
Ld�2p

(1) Entries of this matrix are labelled by pairs of elements of L , and

all the entries corresponding to incomparable pairs are zero.

(2) The matrix has full rank, so there must be a nonzero maximal minor.

(3) In the expansion of the nonzero determinant, there must be a nonzero term.

(4) The permutation corresponding to this term produces the matching �.
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Okay, how to show that the linear map is injective?

(1) We construct a map between smooth projective varieties

f : X �! Y ; dim(X ) = d ; dim(Y ) = jE j:

(2) The map f , which is birational onto its image, comes with an isomorphism

B
�(L ) ' image

�
H

2�(Y ) �! H
2�(X )

�
; L ' ample on Y :

(3) By the decomposition theorem, Rf�QX ' ICf (X ) � C . Therefore,

B
�(L ) is isomorphic to a H 2�(Y )-submodule of IH 2�(f (X )).

(4) The hard Lefschetz theorem for IH 2�(f (X )) gives the conclusion

Bp(L ) Bd�p(L ):
Ld�2p
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In fact, after changing coefficients to Q` if necessary, we have

B�(L ) ' H 2�(f (X )):
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Okay, how to construct the map f : X �! Y ?

The construction of f for the Boolean lattice will induce all other constructions.

June Huh 19 / 23



Okay, how to construct the map f : X �! Y ?

The construction of f for the Boolean lattice will induce all other constructions.

June Huh 19 / 23



My favorite polytopes:

I will mark a vertex of the simplex and a vertex of the cube.
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The corresponding toric varieties are

XAn

Pn (P1)n

Cn

�1 �2

�2�1

The inclusions �1, �2 come from the markings.
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The map �1 is the blowup of all the torus invariant points in Pn ,

all the strict transforms of torus invariant P1’s in Pn ,

all the strict transforms of torus invariant P2’s in Pn , etc.

The map �2 is the blowup of points 0n and 1n ,

all the strict transforms of torus invariant P1’s in (P1)n containing 0n or 1n ,

all the strict transforms of torus invariant (P1)2’s in (P1)n containing 0n or 1n , etc.
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Let E = ff1; f2; : : : ; fng be a spanning subset of a d-dimensional vector space V .

We use E to construct the inclusion �E : V _ �! Cn .

Consider the closure of V _ in Pn and its strict transform

X XAn

V
_

Pn (P1)n :

j

�2�1

�

The map f we want is the composition X XAn (P1)n
j �2 .
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