Points, lines, planes, etc.

June Huh

IAS
November 29, 2016

Here are 4 points in projective plane:

4 Points

The 4 points determine 6 lines:

Let's move one of the points into special position:

4 Points

Now the 4 points determine 4 lines:

Think of all seven points with zero-one coordinates:

7 Points

The 7 points determine 9 lines:

What happens if we move " p " in the base $\operatorname{Spec}(\mathbb{Z})$ toward the prime number 2 ?

The 7 points determine 7 lines:

Theorem

Every set of points E in a projective plane determines at least $|E|$ lines,

Theorem (de Bruijn and Erdős, 1948)

Every set of points E in a projective plane determines at least $|E|$ lines, unless E is contained in a line.

Here are 4 points in space defining 6 lines and 4 planes:

... and 5 points defining 10 lines and 10 planes:

\ldots and 5 points defining 10 lines and 7 planes:

5 POINTS 10 LINES 7 PLANES

\ldots and 5 points defining 8 lines and 5 planes:

Theorem (Motzkin, 1951)

Every set of points E in a projective space determines at least $|E|$ hyperplanes, unless E is contained in a hyperplane.

Theorem (Motzkin, 1951)

Every set of points E in a projective space determines at least $|E|$ hyperplanes, unless E is contained in a hyperplane.

Motzkin worked over the real numbers and used properties of real numbers. The assumption was removed by Basterfield and Kelly in 1968.

The theorem says that $\left|\mathscr{L}_{1}\right| \leq\left|\mathscr{L}_{d-1}\right|$.

Why is this true?

Theorem (Greene, 1970)

For every point (in \mathscr{L}_{1}) one can choose a hyperplane (in \mathscr{L}_{d-1}) containing the point so that no hyperplane is chosen twice (unless E is contained in a hyperplane).

Theorem (Greene, 1970)

For every point (in \mathscr{L}_{1}) one can choose a hyperplane (in \mathscr{L}_{d-1}) containing the point so that no hyperplane is chosen twice (unless E is contained in a hyperplane).

In other words, there is a matching from points to hyperplanes, where

$$
\text { matching }=\left(\mathscr{L}_{1} \longleftrightarrow \mathscr{L}_{d-1}, \quad x \leq \iota(x) \text { for all } x .\right)
$$

Let E be a spanning subset of a d-dimensional vector space V, and let \mathscr{L} be the poset of subspaces of V spanned by subsets of E.

Write \mathscr{L}_{p} for the set of p-dimensional spaces in \mathscr{L}.

Let E be a spanning subset of a d-dimensional vector space V, and let \mathscr{L} be the poset of subspaces of V spanned by subsets of E.

Write \mathscr{L}_{p} for the set of p-dimensional spaces in \mathscr{L}.

Example

If E is the set of 4 general vectors in \mathbb{R}^{3} (4 general points in projective plane),

$$
\begin{aligned}
& \left|\mathscr{L}^{2}\right|=1, \\
& \left|\mathscr{L}_{1}\right|=4, \\
& \left|\mathscr{L}_{2}\right|=6, \\
& \left|\mathscr{L}_{3}\right|=1 .
\end{aligned}
$$

Top-heavy Conjecture (Dowling and Wilson, 1974)
(1) For every p less than $\frac{d}{2}$, we have

$$
\left|\mathscr{L}_{p}\right| \leq\left|\mathscr{L}_{d-p}\right| .
$$

In fact, there is a matching

$$
\mathscr{L}_{p} \longleftrightarrow \mathscr{L}_{d-p} .
$$

Top-heavy Conjecture (Dowling and Wilson, 1974)

(1) For every p less than $\frac{d}{2}$, we have

$$
\left|\mathscr{L}_{p}\right| \leq\left|\mathscr{L}_{d-p}\right| .
$$

In fact, there is a matching

$$
\mathscr{L}_{p} \longleftrightarrow \mathscr{L}_{d-p} .
$$

(2) For every p less than $\frac{d}{2}$, we have

$$
\left|\mathscr{L}_{p}\right| \leq\left|\mathscr{L}_{p+1}\right| .
$$

In fact, there is a matching

$$
\mathscr{L}_{p} \longleftrightarrow \mathscr{L}_{p+1} .
$$

The conjecture is known for the Boolean lattice $\mathscr{L}=2^{E}$ (nontrivial!).

The conjecture is known for the Boolean lattice $\mathscr{L}=2^{E}$ (nontrivial!).

In this case, the conjecture says that (by self-duality) there is

$$
\mathscr{L}_{0} \longleftrightarrow \mathscr{L}_{1} \longleftrightarrow \cdots \longleftrightarrow \mathscr{L}_{d / 2} \longleftrightarrow \cdots \longleftarrow \mathscr{L}_{d-1} \longleftarrow \mathscr{L}_{d}
$$

The conjecture is known for the Boolean lattice $\mathscr{L}=2^{E}$ (nontrivial!).

In this case, the conjecture says that (by self-duality) there is

$$
\mathscr{L}_{0} \longleftrightarrow \mathscr{L}_{1} \longleftrightarrow \cdots \longleftrightarrow \mathscr{L}_{d / 2} \longleftarrow \cdots \longleftarrow \mathscr{L}_{d-1} \longleftarrow \mathscr{L}_{d}
$$

This implies Sperner's theorem:
"The maximum number of incomparable elements in the Boolean lattice is $\binom{d}{d / 2}$."

The conjecture is known for partition lattices (Kung, 1993).
(The poset of all partitions of a finite set ordered by reverse refinement.)

The conjecture is known for partition lattices (Kung, 1993).
(The poset of all partitions of a finite set ordered by reverse refinement.)

Canfield (1978) famously showed that the following stronger version of the conjecture (of Rota) fails for partition lattices:
"For every p, there is a matching from \mathscr{L}_{p} to \mathscr{L}_{p+1} or from \mathscr{L}_{p+1} to \mathscr{L}_{p}."

The conjecture is known for partition lattices (Kung, 1993).
(The poset of all partitions of a finite set ordered by reverse refinement.)

Canfield (1978) famously showed that the following stronger version of the conjecture (of Rota) fails for partition lattices:
"For every p, there is a matching from \mathscr{L}_{p} to \mathscr{L}_{p+1} or from \mathscr{L}_{p+1} to \mathscr{L}_{p}."

The smallest known partition lattice without the matching property has size $\geq 10^{10^{20}}$.

Theorem (H-Wang)
The top-heavy conjecture holds.

Theorem (H-Wang)

The top-heavy conjecture holds.

For those who know about geometric lattices (\simeq matroids):
The original formulation of the conjecture concerns arbitrary geometric lattices.
The current proof works only when \mathscr{L} is "realizable" over some field.

We construct a graded commutative algebra

$$
B^{*}(\mathscr{L})=\bigoplus_{p=0}^{d} B^{p}(\mathscr{L}), \quad B^{p}(\mathscr{L})=\bigoplus_{y \in \mathscr{L}_{p}} \mathbb{Q} y
$$

We construct a graded commutative algebra

$$
B^{*}(\mathscr{L})=\bigoplus_{p=0}^{d} B^{p}(\mathscr{L}), \quad B^{p}(\mathscr{L})=\bigoplus_{y \in \mathscr{L}_{p}} \mathbb{Q} y
$$

The multiplication is defined by the rule

$$
y_{1} y_{2}=\left\{\begin{array}{cl}
y_{1} \vee y_{2} & \text { if } \operatorname{dim}\left(y_{1}\right)+\operatorname{dim}\left(y_{2}\right)=\operatorname{dim}\left(y_{1} \vee y_{2}\right), \\
0 & \text { if } \operatorname{dim}\left(y_{1}\right)+\operatorname{dim}\left(y_{2}\right)>\operatorname{dim}\left(y_{1} \vee y_{2}\right) .
\end{array}\right.
$$

This is a graded version of the Möbius algebra.

We write L for the sum of all elements in \mathscr{L}_{1}, and show that

$$
B^{p}(\mathscr{L}) \xrightarrow{L^{d-2 p}} B^{d-p}(\mathscr{L}),
$$

when \mathscr{L} is realizable over some field. This will be enough.

We conjecture that the same holds without the assumption of realizability.

To deduce the top-heavy conjecture, consider the matrix of the linear map

$$
B^{p}(\mathscr{L}) \xrightarrow{L^{d-2 p}} B^{d-p}(\mathscr{L}) .
$$

To deduce the top-heavy conjecture, consider the matrix of the linear map

$$
B^{p}(\mathscr{L}) \xrightarrow{L^{d-2 p}} B^{d-p}(\mathscr{L}) .
$$

(1) Entries of this matrix are labelled by pairs of elements of \mathscr{L}, and all the entries corresponding to incomparable pairs are zero.

To deduce the top-heavy conjecture, consider the matrix of the linear map

$$
B^{p}(\mathscr{L}) \xrightarrow{L^{d-2 p}} B^{d-p}(\mathscr{L}) .
$$

(1) Entries of this matrix are labelled by pairs of elements of \mathscr{L}, and all the entries corresponding to incomparable pairs are zero.
(2) The matrix has full rank, so there must be a nonzero maximal minor.

To deduce the top-heavy conjecture, consider the matrix of the linear map

$$
B^{p}(\mathscr{L}) \xrightarrow{L^{d-2 p}} B^{d-p}(\mathscr{L}) .
$$

(1) Entries of this matrix are labelled by pairs of elements of \mathscr{L}, and all the entries corresponding to incomparable pairs are zero.
(2) The matrix has full rank, so there must be a nonzero maximal minor.
(3) In the expansion of the nonzero determinant, there must be a nonzero term.

To deduce the top-heavy conjecture, consider the matrix of the linear map

$$
B^{p}(\mathscr{L}) \xrightarrow{L^{d-2 p}} B^{d-p}(\mathscr{L}) .
$$

(1) Entries of this matrix are labelled by pairs of elements of \mathscr{L}, and all the entries corresponding to incomparable pairs are zero.
(2) The matrix has full rank, so there must be a nonzero maximal minor.
(3) In the expansion of the nonzero determinant, there must be a nonzero term.
(4) The permutation corresponding to this term produces the matching ι.

Okay, how to show that the linear map is injective?

Okay, how to show that the linear map is injective?
(1) We construct a map between smooth projective varieties

$$
f: X \longrightarrow Y, \quad \operatorname{dim}(X)=d, \quad \operatorname{dim}(Y)=|E| .
$$

Okay, how to show that the linear map is injective?
(1) We construct a map between smooth projective varieties

$$
f: X \longrightarrow Y, \quad \operatorname{dim}(X)=d, \quad \operatorname{dim}(Y)=|E|
$$

(2) The map f, which is birational onto its image, comes with an isomorphism

$$
B^{*}(\mathscr{L}) \simeq \operatorname{image}\left(H^{2 *}(Y) \longrightarrow H^{2 *}(X)\right), \quad L \simeq \text { ample on } Y
$$

Okay, how to show that the linear map is injective?
(1) We construct a map between smooth projective varieties

$$
f: X \longrightarrow Y, \quad \operatorname{dim}(X)=d, \quad \operatorname{dim}(Y)=|E|
$$

(2) The map f, which is birational onto its image, comes with an isomorphism

$$
B^{*}(\mathscr{L}) \simeq \operatorname{image}\left(H^{2 *}(Y) \longrightarrow H^{2 *}(X)\right), \quad L \simeq \text { ample on } Y
$$

(3) By the decomposition theorem, $R f_{*} \mathbb{Q}_{X} \simeq I C_{f(X)} \oplus \mathscr{C}$.

Okay, how to show that the linear map is injective?
(1) We construct a map between smooth projective varieties

$$
f: X \longrightarrow Y, \quad \operatorname{dim}(X)=d, \quad \operatorname{dim}(Y)=|E|
$$

(2) The map f, which is birational onto its image, comes with an isomorphism

$$
B^{*}(\mathscr{L}) \simeq \operatorname{image}\left(H^{2 *}(Y) \longrightarrow H^{2 *}(X)\right), \quad L \simeq \text { ample on } Y
$$

(3) By the decomposition theorem, $R f_{*} \mathbb{Q}_{X} \simeq I C_{f(X)} \oplus \mathscr{C}$. Therefore, $B^{*}(\mathscr{L})$ is isomorphic to a $H^{2 *}(Y)$-submodule of $I H^{2 *}(f(X))$.

Okay, how to show that the linear map is injective?
(1) We construct a map between smooth projective varieties

$$
f: X \longrightarrow Y, \quad \operatorname{dim}(X)=d, \quad \operatorname{dim}(Y)=|E|
$$

(2) The map f, which is birational onto its image, comes with an isomorphism

$$
B^{*}(\mathscr{L}) \simeq \operatorname{image}\left(H^{2 *}(Y) \longrightarrow H^{2 *}(X)\right), \quad L \simeq \text { ample on } Y .
$$

(3) By the decomposition theorem, $R f_{*} \mathrm{Q}_{x} \simeq I C_{f(X)} \oplus \mathscr{C}$. Therefore,

$$
B^{*}(\mathscr{L}) \text { is isomorphic to a } H^{2 *}(Y) \text {-submodule of } I H^{2 *}(f(X)) \text {. }
$$

(4) The hard Lefschetz theorem for $I H^{2 *}(f(X))$ gives the conclusion

$$
B^{p}(\mathscr{L}) \xrightarrow{L^{d-2 p}} B^{d-p}(\mathscr{L}) .
$$

In fact, after changing coefficients to \mathbb{Q}_{ℓ} if necessary, we have

$$
B^{*}(\mathscr{L}) \simeq H^{2 *}(f(X)) .
$$

Okay, how to construct the map $f: X \longrightarrow Y$?

Okay, how to construct the map $f: X \longrightarrow Y$?

The construction of f for the Boolean lattice will induce all other constructions.

My favorite polytopes:

I will mark a vertex of the simplex and a vertex of the cube.

The corresponding toric varieties are

The inclusions ι_{1}, ι_{2} come from the markings.

The map π_{1} is the blowup of all the torus invariant points in \mathbb{P}^{n}, all the strict transforms of torus invariant \mathbb{P}^{1} s in \mathbb{P}^{n}, all the strict transforms of torus invariant \mathbb{P}^{2},s in \mathbb{P}^{n}, etc.

The map π_{1} is the blowup of all the torus invariant points in \mathbb{P}^{n}, all the strict transforms of torus invariant \mathbb{P}^{1} 's in \mathbb{P}^{n}, all the strict transforms of torus invariant \mathbb{P}^{2},s in \mathbb{P}^{n}, etc.

The map π_{2} is the blowup of points 0^{n} and ∞^{n}, all the strict transforms of torus invariant $\mathbb{P}^{1} s$ in $\left(\mathbb{P}^{1}\right)^{n}$ containing 0^{n} or ∞^{n}, all the strict transforms of torus invariant $\left(\mathbb{P}^{1}\right)^{2}$'s in $\left(\mathbb{P}^{1}\right)^{n}$ containing 0^{n} or ∞^{n}, etc.

Let $E=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be a spanning subset of a d-dimensional vector space V.
We use E to construct the inclusion $\iota_{E}: V^{\vee} \longrightarrow \mathbb{C}^{n}$.

Let $E=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be a spanning subset of a d-dimensional vector space V.
We use E to construct the inclusion $\iota_{E}: V^{\vee} \longrightarrow \mathbb{C}^{n}$.

Consider the closure of V^{\vee} in \mathbb{P}^{n} and its strict transform

$\left(\mathbb{P}^{1}\right)^{n}$.

Let $E=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be a spanning subset of a d-dimensional vector space V.
We use E to construct the inclusion $\iota_{E}: V^{\vee} \longrightarrow \mathbb{C}^{n}$.

Consider the closure of V^{\vee} in \mathbb{P}^{n} and its strict transform

$\left(\mathbb{P}^{1}\right)^{n}$.

The map f we want is the composition $X \xrightarrow{j} X_{A_{n}} \xrightarrow{\pi_{2}}\left(\mathbb{P}^{1}\right)^{n}$.

