Points, lines, planes, etc.

June Huh

IAS

November 29, 2016

June Huh 1/28



Here are 4 points in projective plane:

y Z?‘ Points
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The 4 points determine 6 lines:

4" Points

/ 6 Lines
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Let’'s move one of the points into special position:

17‘ Pomnrs
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Now the 4 points determine 4 lines:

Zf PO/NTJ
A LINES

/ \_.___
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Think of all seven points with zero-one coordinates:

‘ 74 Points
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What happens if we move “p” in the base Spec(Z) toward the prime number 2?

\!/ 7 Pomrs

9 LINES
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The 7 points determine 7 lines:

\'/ 7 powrs

/ 77 Lines
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Theorem

Every set of points E in a projective plane determines at least | E| lines,
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Theorem (de Bruijn and Erdés, 1948)

Every set of points E in a projective plane determines at least | E| lines,

unless E is contained in a line.
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Here are 4 points in space defining 6 lines and 4 planes:

\\ i 4 PoINTS

6 LINES
/ /4 PLAnes
o, PO
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...and 5 points defining 10 lines and 10 planes:

\\\./ 5 points

/0 LINES
/ \./ /_ 10 PLanes
S NN
7 /
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...and 5 points defining 10 lines and 7 planes:

\\@// 5 poinTs

10 LINES
17 PLANES
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...and 5 points defining 8 lines and 5 planes:

\\ / 5 PoinTs

L 8 LINES
7 — \Z___ 5 PLANES
79"" i / Y
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Theorem (Motzkin, 1951)

Every set of points E in a projective space determines at least | E| hyperplanes,

unless E is contained in a hyperplane.
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Theorem (Motzkin, 1951)

Every set of points E in a projective space determines at least | E| hyperplanes,

unless E is contained in a hyperplane.

Motzkin worked over the real numbers and used properties of real numbers.

The assumption was removed by Basterfield and Kelly in 1968.
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The theorem says that | .Z1| < | -Za—1].

Why is this true?
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Theorem (Greene, 1970)

For every point (in £1) one can choose a hyperplane (in £;—1) containing the point

so that no hyperplane is chosen twice (unless E is contained in a hyperplane).
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Theorem (Greene, 1970)

For every point (in £1) one can choose a hyperplane (in £;—1) containing the point

so that no hyperplane is chosen twice (unless E is contained in a hyperplane).

In other words, there is a matching from points to hyperplanes, where

matching = ( Lo L, z <uz) forall z)
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Let E be a spanning subset of a d-dimensional vector space V, and

let .# be the poset of subspaces of V spanned by subsets of E.

Write .%, for the set of p-dimensional spaces in .Z.
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Let E be a spanning subset of a d-dimensional vector space V, and

let .Z be the poset of subspaces of V spanned by subsets of E.

Write .%, for the set of p-dimensional spaces in .Z.

Example

If E is the set of 4 general vectors in IR® (4 general points in projective plane),

|%| =1,
|41 = 4,
|-Z2| = 6,
|Zs| = 1.

June Huh 9/23



Top-heavy Conjecture (Dowling and Wilson, 1974)

(1) Forevery p less than £, we have
|-Zp| < |Zapl-

In fact, there is a matching
.,% ‘;> gd_p.
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Top-heavy Conjecture (Dowling and Wilson, 1974)

(1) Forevery p less than £, we have
|-Zp| < |Zapl-

In fact, there is a matching
.,% ‘;> < d—p-

(2) Forevery p less than £, we have
|-Zp| < |Lptal.

In fact, there is a matching
Ly —— Lpi1.
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The conjecture is known for the Boolean lattice . = 2¥ (nontrivial!).
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The conjecture is known for the Boolean lattice . = 2¥ (nontrivial!).

In this case, the conjecture says that (by self-duality) there is
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The conjecture is known for the Boolean lattice . = 2¥ (nontrivial!).

In this case, the conjecture says that (by self-duality) there is

og/po' ‘,?1' cee G gd/2< > .. ’fd_l ’fd.

This implies Sperner’s theorem:

“The maximum number of incomparable elements in the Boolean lattice is (,7,)."
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The conjecture is known for partition lattices (Kung, 1993).

(The poset of all partitions of a finite set ordered by reverse refinement.)
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The conjecture is known for partition lattices (Kung, 1993).

(The poset of all partitions of a finite set ordered by reverse refinement.)

Canfield (1978) famously showed that the following stronger version of the conjecture

(of Rota) fails for partition lattices:

“For every p, there is a matching from £, to £,+1 or from £,4+1 to £,
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The conjecture is known for partition lattices (Kung, 1993).

(The poset of all partitions of a finite set ordered by reverse refinement.)

Canfield (1978) famously showed that the following stronger version of the conjecture

(of Rota) fails for partition lattices:

“For every p, there is a matching from £, to £,+1 or from £,4+1 to £,

The smallest known partition lattice without the matching property has size > 101°*°.
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Theorem (H-Wang)

The top-heavy conjecture holds.
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Theorem (H-Wang)

The top-heavy conjecture holds.

For those who know about geometric lattices (~ matroids):
The original formulation of the conjecture concerns arbitrary geometric lattices.

The current proof works only when & is “realizable” over some field.
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We construct a graded commutative algebra

B'(2) =P B2, B(2)=E Q.

YEL,
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We construct a graded commutative algebra

B'(2) =P B2, B(2)=E Q.

YEL,

The multiplication is defined by the rule
{ Y1V Y2 if dlm(yl) + dlm(yz) = dlm(yl \% yz),
Y1y2 =

This is a graded version of the Mdbius algebra.
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We write L for the sum of all elements in .%:, and show that

d—2p

B*(Z) B(2),

when .Z is realizable over some field. This will be enough.

We conjecture that the same holds without the assumption of realizability.
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To deduce the top-heavy conjecture, consider the matrix of the linear map

i—2

Br(¢) —X " B (9).
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To deduce the top-heavy conjecture, consider the matrix of the linear map

i—2

Br(¢) —X " B (9).

(1) Entries of this matrix are labelled by pairs of elements of .#, and

all the entries corresponding to incomparable pairs are zero.
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To deduce the top-heavy conjecture, consider the matrix of the linear map

i—2

Br(¢) —X " B (9).

(1) Entries of this matrix are labelled by pairs of elements of .#, and

all the entries corresponding to incomparable pairs are zero.

(2) The matrix has full rank, so there must be a nonzero maximal minor.
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To deduce the top-heavy conjecture, consider the matrix of the linear map

i—2

Br(¢) —X " B (9).

(1) Entries of this matrix are labelled by pairs of elements of .#, and
all the entries corresponding to incomparable pairs are zero.

(2) The matrix has full rank, so there must be a nonzero maximal minor.

(3) In the expansion of the nonzero determinant, there must be a nonzero term.
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To deduce the top-heavy conjecture, consider the matrix of the linear map

i—2

Br(¢) —X " B (9).

(1) Entries of this matrix are labelled by pairs of elements of .#, and
all the entries corresponding to incomparable pairs are zero.
(2) The matrix has full rank, so there must be a nonzero maximal minor.
(3) In the expansion of the nonzero determinant, there must be a nonzero term.

(4) The permutation corresponding to this term produces the matching c.

June Huh 16/23



Okay, how to show that the linear map is injective?
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Okay, how to show that the linear map is injective?

(1) We construct a map between smooth projective varieties
f: X —Y, dm(X)=d, dim(Y)=|E|
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Okay, how to show that the linear map is injective?

(1) We construct a map between smooth projective varieties
f: X —Y, dm(X)=d, dim(Y)=|E|

(2) The map f, which is birational onto its image, comes with an isomorphism

B*(#) ~ image(H2*(Y) — H“(X)), L~ampleonY.
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Okay, how to show that the linear map is injective?
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Okay, how to show that the linear map is injective?

(1) We construct a map between smooth projective varieties
f: X —Y, dm(X)=d, dim(Y)=|E|

(2) The map f, which is birational onto its image, comes with an isomorphism

B*(#) ~ image(H2*(Y) — H“(X)), L~ampleonY.

(8) By the decomposition theorem, Rf.Qx ~ IC¢x) ® €. Therefore,
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Okay, how to show that the linear map is injective?
(1) We construct a map between smooth projective varieties

fiX— Y, dmX)=d, dm(Y)=|E|

(2) The map f, which is birational onto its image, comes with an isomorphism

B*(#) ~ image(H2*(Y) — Hz*(X)), L~ampleonY.

(8) By the decomposition theorem, Rf.Qx ~ IC¢x) ® €. Therefore,

B*(2) is isomorphic to a H**(Y)-submodule of IH**(f(X)).

(4) The hard Lefschetz theorem for IH?*(f(X)) gives the conclusion

Lé—2r d—
Br(¥) — X7, Bi-r(g).
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In fact, after changing coefficients to Q; if necessary, we have

B*(Z) ~ H™(f(X)).
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Okay, how to constructthemap f : X — Y ?
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Okay, how to constructthemap f : X — Y ?

The construction of f for the Boolean lattice will induce all other constructions.
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My favorite polytopes:

I will mark a vertex of the simplex and a vertex of the cube.
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The corresponding toric varieties are

X4

n

]Pn (]Pl)n

L1 L2

Cn

The inclusions t1, t2 come from the markings.
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The map m; is the blowup of all the torus invariant points in IP",
all the strict transforms of torus invariant P*’s in IP",

all the strict transforms of torus invariant P?’s in P", etc.
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The map m; is the blowup of all the torus invariant points in IP",
all the strict transforms of torus invariant P*’s in IP",

all the strict transforms of torus invariant P?’s in P", etc.

The map 2 is the blowup of points 0™ and oo™,
all the strict transforms of torus invariant P*’s in (IP*)™ containing 0™ or co™,

all the strict transforms of torus invariant (IP*)*s in (IP*)™ containing 0™ or co™, etc.
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Let E = {fi, fo, ..., fa} be a spanning subset of a d-dimensional vector space V.

We use E to construct the inclusion ¢z : VvV — C".
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Let E = {fi, fo, ..., fa} be a spanning subset of a d-dimensional vector space V.

We use E to construct the inclusion ¢z : VvV — C".

Consider the closure of V'V in IP" and its strict transform

X —71 5 xa,

TN,
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Let E = {fi, fo, ..., fa} be a spanning subset of a d-dimensional vector space V.

We use E to construct the inclusion ¢z : VvV — C".

Consider the closure of V'V in IP" and its strict transform

X —71 5 xa,

TN,

The map f we want is the composition X <2 X, — 2% (P')" .
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